SCIENTIFIC-PRACTICAL JOURNAL

| укр | рус |

 

 


No2-3(2) 2019

Back to the issue


Zabolotnyi DI, Sambur MB, Voroshylova NM, Verevka SV
Extracellular components of biofilms in the formation of antibiotic resistance and chronicity of the inflammatory process. State of the problem
Zabolotny Dmitry I
State Institution “Institute of otolaryngology named after Prof. O.S. Kolomiychenko of the National Academy of Medical Sciences of Ukraine”; Kyiv, Ukraine. Director
Doctor of Medical Sciences, Professor, Academician of the National Academy of Medical Sciences of Ukraine
E-mail: amtc@kndio.kiev.ua

Sambur Marina B
State Institution “Institute of otolaryngology named after Prof. O.S. Kolomiychenko of the National Academy of Medical Sciences of Ukraine”; Kyiv, Ukraine
Deputy Director for Research
Doctor of Medical Sciences
Email: mbsambur@gmail.com
ORCID ID: http://orcid.org/0000-0002-9347-2829

Verevka Sergiy V.
State Institution “Institute of otolaryngology named after Prof. O.S. Kolomiychenko of the National Academy of Medical Sciences of Ukraine”; Kyiv, Ukraine
Laboratory of biochemistry, manager
Doctor of Biological Sciences, Professor
Email: verevka.biochem@gmail.com
ORCID ID: http://orcid.org/0000-0002-3578-7996

Abstract

Permanent character of the improvement of resistance of living organisms to the influence of adverse environmental factors is an integral property of evolution. One of the manifestiations of this improvement is the formation of the resistance of pathogens to antibiotics. The speed of formation and spread of resistant pathogens complicates the treatment of diseases and creates the danger of discarding of clinical medicine in the pre-antibiotic era. The situation is complicated by the possibility of the formation of multiresistance, which is the resistance of microbiological pathogens to different types of antibiotics. Similarly to the most of microorganisms, bacterial infectious agents exist mainly in the form of biofilms – three-dimensional associate of microorganisms that are fixed by a matrix from an extracellular polymeric substance, which is synthesized by the cells themselves. The main topics of this work are the roles of extracellular components of biofilms in the formation of antibiotic resistance, the need for permanent death of the part of the cells for survive of the community of microorganisms, and the effect of decay products on the adjacent tissues as the premise for the chronicity of the inflammatory process.
The prospects of ultrasound destruction of biofilms for the suppression of antibiotic resistance and the prevention of chronic inflammation are discussed.

Keywords

infectious diseases, antibiotic resistance, chronicity of inflammation, biofilms.


Reference

  1. Burlaka YuB, Goloborod’ko OP, Shuklina YuV, Verevka SV. [Induces of endogenous intoxication and inflammatory response in blood plasma of patients with chronic tonsillitis]. Laboratory Diagnostics Journ. (Ukr.). 2013; 1 (63): 16-9. [Article in Ukrainian].
  2. Veremeenko KN, Goloborod’ko OP, Kizim AI. [Proteolysis at norma and at pathological state]. 1988. Kiev: 200 с. [In Russian].
  3. Gromashevskaya LL. [“Middle-mass molecules” as one of indicators of “metabolic intoxication” of organism]. Laboratory Diagnostics Journ. 1997; 1: 11-16. [Article in Ukrainian].
  4. Dyachenko AG. [Antimicrobal resistance and its evolution. Klin. Immunology]. Allergology. Infectology. 2011; 4: 5-11. [Article in Russian].
  5. Zabolotnyi DI, Kizim AI, Verevka SV. [Pathologic effects of intoxication of cellular membranes by endogenous peptides]. Journ. of the National academy of medical sciences of Ukraine. 2011; 17(3): 201-7. [Article in Ukrainian].
  6. Zabolotnyi DI, Belousova AA, Zaritska IS, Verevka SV. Autochtonic β-aggregation of proteins: cause, molecular mechanisms, and pathologic consequences. Journ. of the National academy of medical sciences of Ukraine. 2014; 24(4): 385-92. [Article in Ukrainian].
  7. Krylov NN. [Problems that cannot but worry: utopias and the realities of the modern doctrine of peptic ulcer]. Vestnik khirurgicheskoĭ gastroėnterologii. 2007; 1: 25-30. [Article in Russian].
  8. Namazova-Baranova LS, Baranov AA. [Antibiotic resistance in modern world]. Pediatric pharmacology. 2017; 14 (5): 341-354. [Article in Russian].
  9. Nikolaev YuA, Plakunov VK. Biofilm – “city of microbes” or an analogue of multicellular organisms? Mikrobiologiia. 2007; 76б (2): 149-163. [Article in Russian].
  10. Ultrasound cavitation of chronic wounds / In.: Petrenko ON, Bezrodnyi BG, Zubov DO, Vasil’ev RG, Tychomyrov AO. Application of innovative technologies in the surgical treatment of purulentnecrotic soft tissue wounds. К.LAT & K, 2018:
    78-80. [Article in Ukrainian].
  11. Abu Bakar M, McKimm J, Haque ZH, Majumder AA, Haque M. Chronic tonsillitis and biofilms: a brief overview of treatment modalities. J Inflamm Res. 2018 Sep 5;11:329-337. doi: 10.2147/JIR.S162486.
  12. Antimicrobial resistance: global report on surveillance. World Health Organization. Geneva: WHO, 2014; XXII: 232 p.
  13. Antimicrobal Resistance Benchmark 2018. Amsterdam; 2018: 185 p.
  14. Babady NE. Hospital-Associated Infections. Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/ microbiolspec.DMIH2-0003-2015.
  15. Barshak MB, Durand ML. The role of infection and antibiotics in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol. 2017 Jan 23;2(1):36-42. doi: 10.1002/lio2.61.
  16. Berger D, Rakhamimova A, Pollack A, Loewy Z. Oral biofilms: development, control, and analysis. High Throughput. 2018 Aug 31;7(3). doi: 10.3390/ ht7030024.
  17. Cai Y, Wang J, Liu X, Wang R, Xia L. A review of the combination therapy of low frequency ultrasound with antibiotics. Biomed Res Int. 2017;2017:2317846. doi: 10.1155/2017/2317846.
  18. Chiang WC, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013 May;57(5):2352-61.
    doi: 10.1128/ AAC.00001-13.
  19. Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018 Jan;16(1):51-65.
    doi: 10.1080/14787210.2018.1417036.
  20. Drago L, Pignataro L, Torretta S. Microbiological aspects of acute and chronic pediatric rhinosinusitis. J Clin Med. 2019 Jan 28;8(2). doi: 10.3390/jcm8020149.
  21. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, et al. Biofilms: an Emergent Form of Bacterial Life. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75. doi: 10.1038/ nrmicro.2016.94.
  22. Flemming H. EPS – then and now. Microorganisms. 2016 Nov 18;4(4). doi: 10.3390/ microorganisms4040041.
  23. Hazen TH, Mettus R, McElheny CL, Bowler SL, Nagaraj S, et al. Diversity among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep. 2018 Jul 6;8(1):10291.
    doi: 10.1038/ s41598-018-28085-7.
  24. Hoffman S, Outterson K, Rottigen G. Cars O, Clift C, et al. An international legal framework to address antimicrobial resistance. Bull World Health Organ. 2015 Feb 1; 93(2): 66 p. doi: 10.2471/ BLT.15.152710.
  25. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, et al. Beta toxin catalyses formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14407-12.
    doi: 10.1073/pnas.0911032107.
  26. Kamiunke N, Herzsprung P, Neu T. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci Total Environ. 2015 Feb 15;506-507:353-60. doi: 10.1016/j.scitotenv.2014.11.043.
  27. Koo H, Allan RN, Howlin RP, Stoodley P, HallStoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017 Dec;15(12):740-755. doi: 10.1038/nrmicro.2017.99.
  28. Mah T, Pitts B, Pellock B, Walker G, Stewart P, et al. A genetic basis for Pseudomonas aeriginosa biofilm antibiotic resistance. Nature. 2003 Nov 20;426(6964):306-10. doi: 10.1038/nature02122.
  29. Mahfouz N, Caucci S, Achatz E, Semmler T, Guenther S, et al. High genomic diversity of multidrug resistant wastewater Escherichia coli. Sci Rep. 2018 Jun 12;8(1):8928. doi: 10.1038/s41598-018-27292-6.
  30. Malfertheiner P, Megraud F, O'Morain CA, Atherton J, Axon AT, еt al. Management of Helicobacter pylori infection – the Maastricht IV/ Florence Consensus Report. Gut. 2012 May;61(5):646-64. doi: 10.1136/gutjnl-2012-302084.
  31. Maske TT, van de Sande FH, Arthur RA, Huysmans MCDNJM, Cenci MS. In vitro biofilm models to study dental caries: a systematic review. Biofouling. 2017 Sep;33(8):661-675. doi: 10.1080/08927014.2017.1354248.
  32. Odenyo A, Makie R, Stahl D, White B. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Appl Environ Microbiol. 1994 Oct;60(10):3688-96.
  33. O’Neill J, editors. Antimicrobal resistance: tackling a crisis for the health and wealth of nations. The Review on Antimicrobal Resistance. London; 2014. 20 p.
  34. Popat R1, Crusz SA, Messina M, Williams P, West SA, et al. Quorum-sensing and cheating in bacterial biofilms. Proc Biol Sci. 2012 Dec 7;279(1748):4765-71. doi: 10.1098/rspb.2012. 1976.
  35. Sanden van Zanten, Kolesnikow T, Leung V, O'Rourke JL, Lee A. Gastric transitional zones, areas where Helicobacter treatment fails: results of a treatment trial using the Sydney strain mouse model. Antimicrob Agents Chemother. 2003
    Jul;47(7):2249-55.
  36. Seiler C, Berendonk T. Heavy metal driven coselection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012 Dec 14;3:399. doi: 10.3389/fmicb.2012.00399.
  37. Taglialegna A, Lasa I, Valle J. Amyloid structures as biofilm matrix scaffolds. J Bacteriol. 2016 Sep 9;198(19):2579-88.
    doi: 10.1128/JB.00122-16.
  38. Tang L, Schramm A, Neu TR, Revsbech NP, Meyer RL. Extracellular DNA in adhesion and biofilm formation of four environmental isolates. A quantitative study. FEMS Microbiol Ecol. 2013 Dec;86(3):394-403. doi: 10.1111/1574-6941.
  39. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge Ph, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012; 84: 377-410. Pure Appl. Chem. 2012; 84(2): 377-410.
    doi: 10.1351/PAC-REC-10-12-04.
  40. Verevka SV. Parametabolic β-Aggregation of proteins: familiar mechanisms with diverse sequels / In: Advances in Medicine and Biology (Berhardt L.V., Ed.), Nova Science Publishers, NY. 2013; 72: 29-48.
  41. Vilain S, Pretorius JM, Theron J, Brözel VS. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol. 2009 May;75(9):2861-8. doi: 10.1128/AEM. 01317-08.
  42. Zabolotnyi DI, Gogunskaya IV, Zabolotnaya DD, Zabrodskaya LV, Verevka SV. Suicide antigens: induced denaturation of proteins in the development of allergic reactions / in: Advances in Medicine and Biology (Berhardt L.V., Ed.). Nova Science Publishers, NY. 2012; 53: 217-32.
 

© 2019, Public Organization «Ukrainian Scientific Medical Society of Otorhinolaryngologists»