№1-2(5) 2022
Вернутся в номер
DOI 10.37219/2528-8253-2022-1-78 |
Huijghebaert Suzy, Hoste Levi, Vanham Guido
Основи фармакології сольових розчинів для гігієни порожнини носа або
дихальних шляхів під час COVID-19 |
Suzy Huijghebaert
Independent Research Support, La Hulpe, Belgium
s.huijghebaert@scarlet.be; s.huijghebaert@gmail.com; OralMedDevs@gmail.com
Levi Hoste
Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University
Hospital, Ghent, Belgium
Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency
Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University
Hospital, Ghent, Belgium
Guido Vanham
Department of Biomedical Sciences, Institute of Tropical Medicine and
University of Antwerp, Antwerp, Belgium |
Аннотация Призначення: Промивання порожнини носа або
розпилення аерозолю ізотонічного чи гіпертонічного сольового розчину є
традиційним методом догляду за дихальними шляхами або порожниною носа.
Нещодавнє невелике дослідження, проведене у амбулаторних пацієнтів із
COVID-19 без гострого респіраторного дистрес-синдрому показало суттєве
зникнення симптомів. Тому ми проаналізували фармакологічні/фармакодинамічні
ефекти ізотонічного або гіпертонічного сольового розчину по відношенню до
інфекції SARS-CoV-2 та респіраторної допомоги.
Методи: Змішаний метод пошуку.
Отримані результати: Завдяки своїм зволожуючим властивостям
фізіологічний розчин сприяє кращому розподілу рідини, що вистилає альвеоли,
і, як було показано, знижує біоаерозольне та вірусне навантаження. Сольовий
розчин зволожує респіраторний епітелій і перетворює слиз у гель, сприяє
биттю війок і покращує мукоциліарний кліренс. Коронавіруси та SARS-CoV-2
пошкоджують війчастий епітелій у порожнині носа та дихальних шляхах.
Сольовий розчин пригнічує реплікацію SARS-CoV-2 у клітинах Vero; можливі
взаємодії включають вірусний механізм проникнення ACE2 (залежна хлорид
конфігурація ACE2), фурин і 3CLpro (інгібування NaCl) і натрієвий канал ENaC.
Сольовий розчин змінює активність мієлопероксидази в епітеліальних або
фагоцитарних клітинах з утворенням хлорноватистої кислоти. Клінічно обробка
порожнини носа чи дихальних шляхів фізіологічним розчином зменшує симптоми
сезонних коронавірусів та інших вірусів застуди. Його використання у вигляді
аерозолю знижує частоту госпіталізацій з приводу бронхіоліту у дітей.
Попередні дані свідчать про зменшення симптомів у пацієнтів із симптоматикою
COVID-19, якщо введення фізіологічного розчину починається протягом 48 годин
після появи перших симптомів.
Висновки: Сольовий розчин взаємодіє на різних рівнях, пов'язаних з
гігієною порожнини носа або дихальних шляхів (промивання носа, полоскання
горла або аерозоль). Якщо його використовувати з моменту появи симптомів
застуди, він може бути корисним доповненням до втручань першої лінії при
COVID-19. Бажано провести формальну оцінку при легкому ступені COVID-19, щоб
встановити ефективність та оптимальні схеми лікування. |
Ключевые слова
Сольовий розчин, Хлорид натрію, SARS-CoV-2, COVID-19. Мукоциліарний кліренс,
Гострий респіраторний дистрес-синдром. |
Литература
- HNO-Ärzte im Netz (2020) Herausgegeben vom Deutschen Berufsverband
der Hals-Nasen-Ohrenärzte e.V.) Tipps zur richtigen Nasenpflege [Tipps
for adequate nasal care]. https://www.hno-aerzte-imnetz.de/unsere-sinne/hno-hygiene/tipps-zur-richtigennasenpflege.html.
Accessed 19 June 2020
- Lungenartze im Netz (Lung doctors in the Net) (2020) Einfaches
Inhalieren kann Tröpfcheninfektion effektiv eindämmern. [Simple
inhalation can limit efficiently droplet infection] https://www.lungenaerzte-im-netz.
de/news-archiv/meldung/article/einfaches-inhalierenkann-troepfcheninfektion-effektiv-eindaemmern/.
Accessed 19 June 2020
- Praxisvita (das Portal für Gesundheit & Medizin) (2020) Inhalieren
bei Corona: Wie wirksam ist das Hausmittel? [Inhalation during Corona;
How effective is this home remedy?] https://www.praxisvita.
de/coronavirus-dieses-hausmittel-hilft-bei-leichten-symptomen-18411.html.
Accessed 19 June 2020
- Leichter Atmen bei Lungen- und bronchialerkrankungen (2020) Corona:
Pflege der Atemwege vermindert Infektionsrisiko [Corona: Care of the
airways reduces the risk of infection]. [24.03.2020] https://www.leichter-atmen.de/copd-news/atemwegspflege.
Accessed 19 June 2020
- PARI-Blog (2020) Treatment and nebuliser therapy for COVID- 19 in
hospital. Interview with the Prof. Dr Kamin, Medical Director of the
Hamm Lutheran Hospital. https://www.pari.com/ int/blog/treatment-and-nebuliser-therapy-for-covid-19-in-hospital-interview-with-the-prof-dr-kamin-medical-director-of-
the-hamm-lutheran-hospital/. Accessed in English 27 July 2020. - Firstly
accessed in German: Accessed 19 June 2020
- Betreut.de (2020) Coronavirus: Was Senioren & ihre Betreuer wissen
müssen. [Coronavirus: What seniors and care givers need to know]
www.betreut.be. Accessed 14 July 2020
- ETH Zurich (2020) Mit Atemwegspflege das Infektionsrisiko senken.
[With airway care decrease the risk of infection.] https://ethz.ch/de/news-und-
veranstaltungen/eth-news/news/2020/03/zukunftsblog-viola-vogel-mit-atemwegspflege-das-infektionsrisiko-senken.html.
Accessed 14 July 2020
- Bronchiectasis Toolbox (2020) Hydration and humidification. https://bronchiectasis.com.au/
physiotherapy/principles-of-airway-clearance/
hydration-and-humidification. Accessed 13 July 2020
- Kramer A, Eggers M, Hübner N-O et al (2020) Empfehlung der DGKH.
Viruzides Gurgeln und viruzider Nasenspray [Virucidal gargling and
virucidal
Nose sprays]. Deutsche Gesellschaft für Krankenhaushygiene e.V.,
01.12.2020. Accessed 9 January 2021. https://www.krankenhaushygiene.de/
pdfdata/2020_12_ 02_Empfehlung-viruzides-gurgeln-nasenspray.pdf
- Sciensano (2020) Consensus over het rationeel en correct gebruik van
mondmaskers tijdens de COVID-19-pandemie [Consensus on the rational and
correct use of mouth masks during the COVID-19 pandemic].
https://covid-19.sciensano.be/sites/default/files/Covid19/consensus%20on%20the%20use%20of%20masks_
RMG_NL.pdf. Accessed 13 July 2020
- Sciensano (2020) Procedure voor huisartsen in geval van een mogelijk
geval van COVID-19. Versie 08 juli 2020. [Procedure for doctors in the
event of a possible case of COVID-19]. https://
covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_
procedure_GP_NL.pdf . Accessed 13 July 2020
- APB (2020) Aerosoltoestellen [Aerosol devices]. Information Up date
20 March 2020 . https://www.apb.be/APB% 2 0 Documents/NL/All%20partners/CORONAVIRUS_
AEROSOL_VERHUUR_20_03_20.pdf. Accessed 19 June 2020
- World Health Organization (2020) Modes of transmission of virus
causing COVID-19: implications for IPC precaution recommendations.
Scientific Brief, 29 March 2020. https://www.who.int/
publicationsdetail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.
Accessed June 19, 2020.
- Pfeifer M, Ewig S, Voshaar T et al (2020) Position paper for the
state-of-the-art application of respiratory support in patients with
COVID-19. Respiration 99:521–541. https://doi.org/10.1159/ 000509104
- Kimura KS, Freeman MH, Wessinger BC et al (2020) Interim analysis of
an open-label randomized controlled trial evaluating nasal irrigations
in non-
hospitalized patients with COVID-19. Int Forum Allergy Rhinol Sep 11 [Epub
ahead of print]. https://doi.org/10.1002/alr.22703
- ClinicalTrials.gov Identifier: NCT04347538. Impact of nasal sa- line
irrigations on viral load in patients with COVID-19. https://
clinicaltrials.gov/ct2/
show/record/NCT04347538?term= saline&cond=covid-19&draw=2&rank=1
- Santos FKG, Barros Neto EL, Moura TMCPA et al (2009) Molecular
behavior of ionic and nonionic surfactants in saline medium. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 333:156–162.
https://doi.org/10.1016/j. colsurfa.2008.09.040
- Staszak K, WieczorekD MK (2015) Effect of sodium chloride on the
surface and wetting properties of aqueous solutions of
cocamidopropyl betaine. J Surfact Deterg 18:321–328. https:// doi.org/10.1007/s11743-014-1644-8
- Avery ME, Mead J (1959) Surface properties in relation to atelec-
tasis and hyaline membrane disease. AMA J Di Child
97(5_Part_I):517-5523. https://doi.org/10.1001/archpedi.1959.
02070010519001
- Ghadiali SN, Gaver DP (2008) Biomechanics of liquid-epithelium
interactions in pulmonary airways. Respir Physiol Neurobiol
163(1-3):232-243.
https://doi.org/10.1016/j.resp.2008.04.008
- Huang J, Hume AJ, Abo KM et al (2020) SARS-CoV-2 infection of pluripotent stem cell-derived human
lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. bioRxiv [Preprint]:
175695. https://doi.org/10.1101/2020.06.30.175695
- Takano H (2020) Pulmonary surfactant itself must be
a strong defender against SARS-CoV-2. Medical Hypotheses 144: 110020. https://doi.org/10.1016/j.mehy.2020.110020
- Edwards DA, Man JC, Brand P et al (2004) Inhaling to mitigate
exhaled bioaerosols. Proc Natl Acad Sci USA 101(50):17383-17388.
https://doi.org/10.1073/pnas.0408159101
- Edwards DA, Fiegel J, DeHaan W et al (2006) Novel inhalants for
control and protection against airborne infections. Resp Drug Delivery
1:41-48
- Edwards D, Hickey A, Batycky R et al (2020) A new natural defense
against airborne pathogens. QRB Discovery 1:e5.
https://doi.org/10.1017/qrd.2020.9
- Fiegel J, Clarke R, Edwards DA (2006) Airborne
infectious disease and the suppression of pulmonary
bioaerosols. Drug Discov Today 11(1-2):51–57.
https://doi.org/10.1016/S1359-6446(05)03687-1
- Simonds A, Hanak A, Chatwin M et al (2010) Evaluation of droplet dispersion during non-invasive ventilation, oxygen thera- py, nebuliser treatment and chest
physiotherapy in clinical prac- tice: implications for
management of pandemic influenza and other airborne
infections. Health Technol Assess 14:131–172. https://
doi.org/10.3310/hta14460-02
- Hendley JO, Gwaltney JM (2004) Viral titers in nasal
lining fluid compared to viral titers in nasal washes
during experimental rhinovirus infection. J Clin Virol
30(4):326–328. https://doi.org/10.1016/j.jcv.2004.02.011
- Ramalingam S, Graham C, Dove J et al (2019) A pilot,
open labelled randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common
cold. Sci Rep 9:1015. https://doi.org/10.1038/s41598-018-37703
- Watanabe W, Thomas M, Clarke R et al (2007) Why
inhaling salt water changes what we exhale. J Colloid
Interface Sci 307:71–78. https://doi.org/10.1016/j.jcis.2006.11.017
- Patel A, Longmore N, Mohanan A, Ghosh S (2019)
Salt and pH- induced attractive interactions on the
rheology of food protein- stabilized nanoemulsions.
CS Omega 4(7):11791–11800. https:// doi.org/10.1021/acsomega.8b03360
- Wang Q, Li W, Hu N et al (2017) Ion concentration
effect (Na+ and Cl-) on lipid vesicle formation. Colloids Surf B Biointerfaces. 155:287–293.
https://doi.org/10.1016/j.colsurfb.2017.04.030
https://www.sciencedirect.com/science/article/abs/pii/S0927776517302163
- Liu S, Novoselac A (2014) Transport of airborne
particles from an unobstructed cough jet. Aerosol Sci
Technol 48(11):1183–1194. https://doi.org/10.1080/02786826.2014.968655
- Heyder J (2004) Deposition of inhaled particles in the
human respiratory tract and consequences for regional
targeting in respi- ratory drug delivery. Proc Am
Thorac Soc 1:315–320. https://doi. org/10.1513/pats.200409-046TA
- Rengasamy S, Zhuang Z, Niezgoda G et al (2018) A
comparison of total inward leakage measured using
sodium chloride (NaCl) and corn oil aerosol methods
for air-purifying respirators. J Occup Environ Hyg
15(8):616–627. https://doi.org/10.1080/15459624.2018.1479064
- Negm N (2008) Solubilization characteristics of paraffin oil in different types of surfactants. Egyptian J
Chem 51(1):21–29 https://www.researchgate.net/ publication/280015681_ Solubiliza-tion_characteristics_of_paraffin_oil_in_different_types_of_surfactants
- Baimes C (2020) Alberta researcher wins award for
salt-coated mask innovation. The Canadian Press,
CBC. https://www.cbc.ca/news/canada/edmonton/
alberta-researcher-award-salt-masks-covid-1.5813921.
Accessed 10 January 2021
- Vejerano EP, Marr LC (2018) Physicochemical characteristics of evaporating respiratory fluid droplets. J
R Soc Interface 15: 20170939. https://doi.org/10.1098/rsif.2017.0939
- Yang W, Elankumaran S, Marr LC (2012) Relationship between humidity and Influenza A viability in
droplets and implications for influenza’s easonality.
PLoS ONE 7(10):e46789. https://doi.org/10.1371/journal.pone.0046789
- Wolf G, Koidl B, Pelzmann B (1991) [Zur Regeneration des Zilienschlages humaner Flimmerzellen]
Regeneration of the ciliary beat of human ciliated ells.
Laryngorhinootologie 70(10): 552–555.
https://doi.org/10.1055/s-2007-998095
- Daviskas E, Anderson SD, Gonda I et al (1996) Inhalation of hypertonic saline aerosol enhances mucociliary clearance in asthmatic and healthy subjects. Eur
Respir J 9(4):725–732. https://doi.org/10.1183/09031936.96.09040725
- Fu Y, Tong J, Meng F et al (2018) Ciliostasis of airway epithelial cells facilitates Influenza A virus infection. Vet Res 49(1):65. https://doi.org/10.1186/s13567-018-0568-0
- Keojampa BK, Nguyen MH, Ryan MW (2004) Effects
of buff- ered saline solution on nasal mucociliary
clearance and nasal air- way patency. Otolaryngol
Head Neck Surg 131(5):679–682.
https://doi.org/10.1016/j.otohns.2004.05.026
- Sood N, Bennett WD, Zeman K et al (2003) Increasing concentration of inhaled saline with or without
amiloride: effect on mucociliary clearance in normal
subjects. Am J Respir Crit Care Med 167(2):158–163.
https://doi.org/10.1164/rccm.200204- 293OC
- Kim C-H, Song MH, Ahn YE et al (2005) Effect of
hypo-, iso- and hypertonic saline irrigation on secretory mucins and morphology of cultured human nasal
epithelial cells. Acta Oto-Laryngologica 125:1296–1300.
https://doi.org/10.1080/00016480510012381
- Sumaily I, Alarifi I, Alsuwaidan R et al (2020) Impact
of nasal irrigation with iodized table salt solution on
mucociliary clearance: proof-of-concept randomized
control trial. Am J Rhinol Allergy 34(2):276–279.
https://doi.org/10.1177/1945892419892172
- Min YG, Lee KS, Yun JB et al (2001) Hypertonic
saline decreases ciliary movement in human nasal epithelium in vitro. Otolaryngol Head Neck Surg
124(3):313–316. https://doi.org/10.1067/mhn. 2001.
113145
- Bencova A, Vidan J, Rozborilova E, Kocan I (2012)
The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol 63(3):309–313 http://www.jpp. krakow.pl/journal/archive/06_12/pdf/309_06_12_article.pdf
- Talbot AR, Herr TM, Parsons DS (1997) Mucociliary
clearance and buffered hypertonic saline solution.
Laryngoscope 107(4): 500–503. https://doi.org/10.
1097/00005537-199704000-00013
- Bennett WD, Wu J, Fuller F et al (2015) Duration of
action of hypertonic saline on mucociliary clearance in
the normal lung. J Appl Physiol 118(12):1483–1490. https://doi.org/10.1152/
japplphysiol.00404.2014
- Middleton PG, Pollard KA, Wheatley JR (2001) Hypertonic saline
alters ion transport across the human airway epithelium. Eur Resp J
17:195–199 https://erj.ersjournals.com/content/17/2/195
- Jiao J, Yang J, Li J et al (2020) Hypertonic saline and seawater
solutions damage sinonasal epithelial cell airliquid interface cul-
tures. Int Forum Allergy Rhinol 10(1):59–68. https://doi.org/10.
1002/alr.22459
- Miwa M, Matsunaga M, Nakajima N et al (2007) Hypertonic saline
alters electrical barrier of the airway epithelium. Otolaryngol Head
Neck Surg 136(1):62–66. https://doi.org/10. 1016/j.otohns.2006.08.013
- Hauptman G, Ryan MW (2007) The effect of saline solutions on nasal
patency and mucociliary clearance in rhinosinusitis patients.
Otolaryngol Head Neck Surg 137(5):815–821. https://doi.org/10.
1016/j.otohns2007.07.034
- Balmes JR, Fine JM, Christian D et al (1988) Acidity potentiates
bronchoconstriction induced by hypoosmolar aerosols. Am Rev Respir Dis
138(1):35–39. https://doi.org/10.1164/ajrccm/138.1.35
- Makker HK, Holgate ST (1993) The contribution of
neurogenic reflexes to hypertonic saline-induced bronchoconstriction in asthma. J Allergy Clin Immunol
92:82–88. https://doi.org/10.1016/0091-6749(93)90041-d
- Taube C, Holz O, Mücke M et al (2001) Airway response to inhaled hypertonic saline in patients with
moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1810–1815.
https://doi.org/10.1164/ajrccm.164.10. 2104024
- Lowry RH, Wood AM, Higenbottam TW (1988)
Effects of pH and osmolarity on aerosol-induced
cough in normal volunteers. Clin Sci (Lond)
74(4):373–376. https://doi.org/10.1042/cs0740373
- Mandelberg A, Amirav I (2010) Hypertonic saline or
high volume normal saline for viral bronchiolitis:
mechanisms and rationale. Paed Pulmonol 45:36–40.
https://doi.org/10.1002/ppul.21185
- Bartoszewski R, Matalon S, Collawn JF (2017) Ion
channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol
313(5):L859–L872. https://doi.org/10.1152/ajplung.00285.2017
- Fahy JV, Dickey BF (2010) Airway mucus function
and dysfunc- tion. N Engl J Med 2363(23):2233–2247.
https://doi.org/10.1056/ NEJMra0910061
- Bustamante-Marin XM, Ostrowski LE (2017) Cilia
and mucociliary clearance. Cold Spring Harb Perspect
Biol 9(4): a028241. https://doi.org/10.1101/ cshperspect.a028241
- Hollenhorst MI, Richter K, Fronius M (2011) Ion
transport by pulmonary epithelia. J Biomed Biotechnol
Article ID 174306, 16pages. https://doi.org/10.1155/2011/174306
- Iwan IH, Dziembowska I, Słonina DA (2019) Airways
surface liquid and ion Transport - The mechanism
maintained patency. Biom J Scie Techn Res 14(3):1-7.
https://doi.org/10.26717/BJSTR.2019.14.002543
https://biomedres.us/fulltexts/BJSTR.MS.ID.002543.php
- Pinto JM, Jeswani S (2010) Rhinitis in the geriatric
population. Allergy Asthma Clin Immunol 6(1):10.
https://doi.org/10.1186/ 1710-1492-6-10
- Lillehoj EP, Kato K, Lu W, Kim KC (2013) Cellular
and molec- ular biology of airway mucins. Int Rev
Cell Mol Biol 303:139–202. https://doi.org/10.1016/B978-0-12-407697-6.00004-0
- Lieleg O, Vladescu I, Ribbeck K (2010) Characterization of par- ticle translocation through mucin
hydrogels. Biophys J 98:1782–1789.
https://doi.org/10.1016/j.bpj.2010.01.012
- McCullagh CM, Jamieson AM, Blackwell J, Gupta R
(1995) Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers
35(2):149–159. https://doi.org/10.1002/bip.360350203
- Button B, Goodell HP, Atieh E et al (2018) Roles of
mucus adhe- sion and cohesion in cough clearance.
PNAS 115(49):12501–12506. https://doi.org/10.1073/pnas.1811787115
- Wills PJ, Hall RL, Wm C, Cole PJ (1997) Sodium
chloride in- creases the ciliary transportability of cystic fibrosis and bronchiectasis
sputum on the mucusdepleted bovine trachea. J Clin Inv 99(1):9–13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507760/pdf/990009.pdf
- Lin L, Chen Z, Cao Y, Sun G (2017) Normal saline
solution nasal- pharyngeal irrigation improves chronic
cough associated with allergic rhinitis. Am J Rhinol
Allergy 31(2):96–104. https://doi.org/10.2500/ajra.
2017.31.4418
- Elkins MR, Bye PT (2011) Mechanisms and applications of hy- pertonic saline. J R Soc Med 104(Suppl
1):S2–S5. https://doi.org/10.1258/jrsm.2011.s11101
- Goralski JL, Wu D, Thelin WR et al (2018) The in
vitro effect of nebulised hypertonic saline on human
bronchial epithelium. Eur Respir J 51(5):1702652.
https://doi.org/10.1183/13993003. 02652-2017
- Boon M, Jorissen M, Jaspers M et al (2016) The influence of nebulized drugs on nasal ciliary activity. J
Aerosol Med Pulm Drug Deliv 29(4):378–385.
https://doi.org/10.1089/jamp.2015. 1229
- Rusznak C, Devalia JL, Lozewicz S, Davies RJ (1994)
The assessment of nasal mucociliary clearance and the
effect of drugs. Respir Med 88(2):89-101.
https://doi.org/10.1016/0954-6111(94)90020-5
- Workman AD, Cohen NA (2014) The effect of drugs
and other compounds on the ciliary beat frequency of
human respiratory epithelium. Am J Rhinol Allergy
28(6):454-464. https://doi.org/10.2500/ajra.2014.28.4092
- Rivera JA (1962) Cilia, ciliated epithelium, and ciliary
activity. International Series of Monographs and Applied Biology. 1st edn. Pergamon Press ltd, Oxfor-London-NewYork-Paris pp.50-58. ISBN
978008009623
- Paul P, Johnson P, Ramaswamy P et al (2013) The
effect of ageing on nasal mucociliary clearance in
women: a pilot study. Pulmonol Article ID598589:5
pages. https://doi.org/10.1155/2013/598589
- Purushothaman PK, Priyangha E, Vaidhyswaran R
(2020) Effects of prolonged use of facemask on
healthcare workers in tertiary care hospital during
COVID-19 pandemic. Indian J Otolaryngol Head
Neck Surg:1–7. https://doi.org/10.1007/s12070-020-02124- 0
- White DE, Bartley J, Nates RJ (2015) Model demonstrates func- tional purpose of the nasal cycle. BioMed
Eng OnLine 14:38. https://doi.org/ 10.1186/s12938-015-0034-4
- Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble
mediators, not cilia, determine airway surface liquid volume in normal
and cystic fibrosis superficial airway epithelia. J Gen Physiol
127(5):591–604. https://doi.org/10.1085/jgp.200509468
- Hildenbrand T, Weber RK, Brehmer D (2011) Rhinitis
sicca, dry nose and atrophic rhinitis: a review of the
literature. Eur Arch Otorhinolaryngol 268(1):17–26.
https://doi.org/10.1007/s00405- 010-1391-z
- Harvey PR, Tarran R, Garoff S, Myerburg MM (2011)
Measurement of the airway surface liquid volume with
simple light refraction microscopy. Am J Respir Cell
Mol Biol 45(3): 592–599.
https://doi.org/10.1165/rcmb.2010-0484OC
- Tanner K, Roy N, Merrill RM et al (2010) Nebulized isotonic saline
versus water following a laryngeal desiccation challenge in classically trained sopranos. J
Speech Language Hearing Res 53(6):1555–1566.
https://doi.org/10.1044/1092-4388(2010/09-0249
- Personal communications by pneumologists, dentists
and paedia- tricians wearing daily well-fitting professional masks, July- October 2020
- Slapak I, Skoupa J, Strnad P, Hornik P (2008) Efficacy of isotonic nasal wash (seawater) in the treatment
and prevention of rhinitis in children. Arch Otolaryngol Head Neck Surg 134:67–74. https://
doi.org/10.1001/archoto.2007.19
- Newster (2020) Eco-sustainable technology for the
processing of healthcare waste (HCW), on-site or in
centralized treatment centers. Coronaviruses: SARS,
MERS and Covid19. 28/02/2020 http://
www.newstergroup.com/news/coronavirusessars_mers_and_covid19
- Machado RRG, Glaser T, Araujo DB et al (2020)
Hypertonic saline solution inhibits SARS-CoV-2 in
vitro assay. bioRxiv 2020.08.04:235549.
https://doi.org/10.1101/2020.08.04.235549
- Hoffmann M, Kleine-Weber H, Schroeder S et al
(2020) SARS- CoV-2 Cell entry depends on ACE2
and TMPRSS2 and is blocked by a clinically proven
protease inhibitor. Cell 181(2): 271–280.e8.
https://doi.org/10.1016/j.cell.2020.02.052
- Hou Y, Zhao J, Martin W et al (2020) New insights
into genetic susceptibility of COVID-19: an ACE2 and
TMPRSS2 polymorphism analysis. BMC Med
18:art.No.216. https://doi.org/10.1186/s12916-020-01673-z
- Sungnak W, Huang N, Bécavin C et al (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat
Med 26:681–687. https://doi.org/10. 1038/s41591-020-0868-6
- Rushworth CA, Guy JL, Turner AJ (2008) Residues
affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and
ACE2) identified by site-directed mutagenesis. FEBS
J 275(23):6033–6042. https://doi. org/10.1111/j.1742-4658.2008.06733
- Guy JL, Jackson RM, Acharya KR et al (2003) Angiotensin-converting enzyme-2 (ACE2): comparative
modeling of the active site, specificity requirements,
and chloride dependence. Biochemistry 42(45):13185–13192.
https://doi.org/10.1021/bi035268s
- Vincent MJ, Bergeron E, Benjannet S et al (2005)
Chloroquine is a potent inhibitor of SARS coronavirus
infection and spread. Virol J 2:69.
https://doi.org/10.1186/1743-422X-2-69
- Chitranshi N, Gupta VK, Rajput R et al (2020) Evolving geo- graphic diversity in SARS-CoV2 and in silico
analysis of replicat- ing enzyme 3CLpro targeting repurposed drug candidates. J Transl Med 18(1):278.
https://doi.org/10.1186/s12967-020- 02448-z
- Graziano V, McGrath WJ, DeGruccio AM et al (2006)
Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS letters 580(11):2577–2583.
https://doi.org/10.1016/j.febslet.2006. 04.004
- Ferreira JC, Rabeh WM (2020) Biochemical and
Biophysical characterization of the main protease, 3-chymotrypsin-like prote- ase (3CLpro), from the novel
coronavirus disease 19(COVID-19). Research Square.
New York University Abu Dhabi, pp 1-17.
https://assets.researchsquare.com/files/rs-40945/v1/
e41c3648-96c7-4953-bb2b-a5c5d1a19e7f.pdf
- Chang HP, Chou CY, Chang GG (2007) Reversible
unfolding of the severe acute respiratory syndrome
coronavirus main protease in guanidinium chloride.
Biophys J 92(4):1374–1383. https://doi. org/10.1529/
biophysj.106.091736
- Abian O, Ortega-Alarcon D, Jimenez-Alesanco A et al
(2020) Structural stability of SARS-CoV-2 3CLpro
and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol 164:1693–1703. https://doi.org/10.1016/j.ijbiomac. 2020.07.235
- Grum-Tokars V, Ratia K, Begaye A et al (2008) Evaluating the 3C-like protease activity of SARS-Coronavirus:
recommendations for standardized assays for drug discovery. Virus Res 133(1):63-73.
https://doi.org/10.1016/j.virusres.2007.02.015
- Shi J, Song J (2006) The catalysis of the SARS 3C-like protease is under extensive regulation by its extra
domain. The FEBS Journal 273(5):1035–1045.
https:// doi.org/10.1111/j.1742-4658.2006. 05130.x
- Bestle D, Heindl MR, Limburg H et al (2020)
TMPRSS2 and furin are both essential for proteolytic
activation of SARS-CoV-2 in human airway cells.
Life Sci Alliance 3(9):e202000786. https://
doi.org/10.26508/lsa.202000786
- Shang J, Wan Y, Luo C et al (2020) Cell entry mechanisms of SARS-CoV-2. PNAS 117(21):11727–11734.
https://doi.org/10.1073/pnas.2003138117
- Hasan A, Paray BA, Hussain A et al (2020) A review
on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin.
J Biomol Struct Dyn:1-9. https:// doi.org/10.1080/
07391102.2020.1754293
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189411/
- Izidoro MA, Gouvea IE, Santos JA et al (2009) Lindberg I, Juliano L (2009) A study of human furin specificity using synthetic pep- tides derived from natural
substrates, and effects of potassium ions. Arch Biochem Biophys 487(2):105–114. https://doi.org/10.1016/j.abb.2009.05.013
- Zhou T, Tsybovsky Y, Olia AS et al (2020) A pH-dependent switch mediates conformational masking of
SARS-CoV-2 spike. bioRxiv [Preprint]
2020.07.04.187989 https://doi.org/10.1101/ 2020.07.
04.187989
- Ou X, Liu Y, Lei X et al (2020) Characterization of
spike glycoprotein of SARS-CoV-2 on virus entry and
its immune cross- reactivity with SARS-CoV. Nat
Commun 11(1):1620. https:// doi.org/10.1038/s41467-020-15562-9
- Smyrlaki I, Ekman M, Lentini A et al (2020) Massive and rapid
COVID-19 testing is feasible by extractionfree SARS-CoV-2 RT-PCR. Nat Commun 11:4812.
https://doi.org/10.1038/s41467-020-18611-5.
- Fischer H, Widdicombe JH (2006) Mechanisms of
acid and base secretion by the airway epithelium. J
Membr Biol 211(3):139-150. https://doi.org/10.1007/s00232-006-0861-0
- Reddi BA (2013) Why is saline so acidic (and does it
really mat- ter?). Int J Med Sci 10(6):747–750.
https://doi.org/10.7150/ijms. 5868
- Enuka Y, Hanukoglu I, Edelheit O et al (2012) Epithelial sodium channels (ENaC) are uniformly distributed
on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 137(3): 339–353.
https://doi.org/10.1007/s00418-011-0904-1
- Anand P, Puranik A, Aravamudan M et al (2020)
SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 9:e58603.
https://doi.org/10.7554/eLife.58603
- Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the
role of the novel S1/S2 site. iScience 23:101212.
https://doi.org/10.1016/j.isci.2020. 101212
- Ji HL, Zhao R, Matalon S, Matthay MA (2020) Elevated plas- min(ogen) as a common risk factor for
COVID-19 susceptibility. Physiol Rev 100(3):1065–1075. https://doi.org/10.1152/physrev. 00013.2020
- Kleyman TR, Carattino MD, Hughey RP (2009) ENaC
at the cutting edge: regulation of epithelial sodium
channels by prote- ases. J Biol Chem 284(31):20447–20451. https://doi.org/10.1074/ jbc.R800083200
- Szabó GT, Kiss A, Csanádi Z, Czuriga D (2020) Hypothetical dysfunction of the epithelial sodium channel
may justify neurohumoral blockade in coronavirus
disease 2019. ESC Heart Fail 17.
https://doi.org/10.1002/ehf2.13078
- Noda M, Hiyama TY (2015) The Nax Channel: What
it is and what it does. The Neuroscientist 21(4):399–412. https://doi.org/
10.1177/1073858414541009
- Marunaka Y, Marunaka R, Sun H et al (2016) Na+
homeostasis by epithelial Na+ channel (ENaC) and
Nax channel (Nax): cooperation of ENaC and Nax.
ATM 4(Suppl 1):S11. https://doi.org/10.
21037/atm.2016.10.42
- Blé FX, Cannet C, Collingwood S et al (2010) ENaC-mediated effects assessed by MRI in a rat model of
hypertonic saline-induced lung hydration. Br J Pharmacol 160(4):1008–1015. https://doi.org/10.1111
/j.1476-5381.2010.00747.x
- Ramalingam S, Cai B, Wong J et al (2018) Antiviral
innate im- mune response in non-myeloid cells is
augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep 8: 13630.
https://doi.org/10.1038/s41598-018-31936-y
- Zhang N, Francis KP, Prakash A, Ansaldi D (2013)
Enhanced detection of myeloperoxidase activity in deep tissues through
luminescent excitation of nearinfrared nanoparticles. Nat Med 19(4):500–505.
https://doi.org/10.1038/nm.3110
- Suzuki K, Yamada M, Akashi K, Fujikura T (1986)
Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60. Arch Biochem Biophysics 245(1): 167–173.
https://doi.org/10.1016/0003-9861(86) 90201-8
- Wang G, Nauseef WM (2015) Salt, chloride, bleach,
and innate host defense. J Leukocyte Biol 98(2):163–172. https://doi.org/10. 1189/jlb.4RU0315-109R
- Chandler JD, Day BJ (2012) Thiocyanate: a potentially useful
therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 84(11):1381-1387. https://doi.org/10.1016/ j.bcp.2012. 07.029
- Nadesalingam A, Chen JHK, Farahvash A, Khan MA
(2018) Hypertonic saline suppresses NADPH oxidasedependent neutrophil extracellular trap formation and
promotes apoptosis. Front Immunol 9:359.
https://doi.org/10.3389/fimmu.2018.00359.
- Delgado-Enciso I, Paz-Garcia J, Barajas-Saucedo CE,
Mokay- Ramírez KA Meza-Robles C, Lopez-Flores R (2020) Patient- reported
health outcomes after treatment of COVID-19 with neb- ulized and/or intravenous neutral electrolyzed saline combined with usual
medical care versus usual medical care alone: a randomized, open-label, controlled trial. Res Sq [Preprint]
10:rs.3.rs-68403. https://doi.org/10.21203/ rs.3.rs-68403/v1
- WHO (2020) Saline. https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters#saline
- WHO (2020) Can rinsing your nose regularly with
saline solution prevent Covid-19? https://www.who.
int/docs/default-source/searo/thailand/12myths-
final099bfbf976c54d5fa3407a65b6d 9fa9d.pdf
- Salmon Ceron D, Bartier S, Hautefort C et al (2020)
APHP COVID-19 research collaboration. Selfreported loss of smell without nasal obstruction to
identify COVID-19. The multicenter Coranosmia cohort study. J Infect 81(4):614–620. https://doi.org/10.1016/j.jinf.2020.07.005
- Voshaar T. COVID-19 Therapie aus Sicht eines Aerosol-Experten. PARI.de - Artzeportal 28 Juli 2020.
https://www.pari.com/de/aerzteportal/news/ covid-19-therapie-aus-sicht-eines-aerosol-experten Accessed 10
January 2021
- Jayaweera M, Perera H, Gunawardana B, Manatunge J
(2020) Transmission of COVID-19 virus by droplets
and aerosols: A critical review on the unresolved dichotomy. Environ Res 188: 109819. https://doi.org/10.1016/j.envres.2020.109819
- WHO (2020) Transmission of SARS-CoV-2: implications for infection prevention precautions.
https://www.who.int/news-room/ commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions Accessed 10 Jan-uary 2021
- Ueki H, Furusawa Y, Iwatsuki-Horimoto K et al (2020) Effectiveness
of face masks in preventing airborne transmission of SARS-CoV-2. mSphere
5(5):e00637–e00620. https://doi.org/ 10.1128/
mSphere.00637-20
- Ehre C (2020) SARS-CoV-2 infection of airway cells.
N Engl J Med 383:969. https://doi.org/10.1056/NEJMicm2023328
- Zhu N, Wang W, Liu Z et al (2020) Morphogenesis
and cytopathic effect of SARS-CoV-2 infection in
human airway epithelial cells. Nat Commun 11:3910.
https://doi.org/10.1038/s41467-020-17796-z
- Robinot R, Hubert M, Dias de Mehlo G et al (2020)
SARS-CoV-2 infection damages airway motile cilia
and impairs mucociliary clearance. bioRxiv.
https://doi.org/10.1101/2020.10.06.328369
- Baker AN, Richards SJ, Guy CS et al (2020) The
SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci 6(11): 2046–2052.
https://doi.org/10.1021/acscentsci.0c00855
- Hou YJ, Okuda K, Edwards CE et al (2020) SARS-CoV-2 reverse genetics reveals a variable infection
gradient in the respiratory tract. Cell 182(2):429–46.e14. https://doi.org/10.1016/j.cell.2020. 05.042
- Burke W (2014) The ionic composition of nasal fluid
and its function. Health 06(08):720-728. https://doi.org/10.4236/health. 2014.68093 https://www.scirp.org/pdf/Health _2014032610554655.pdf
- Grandjean Lapierre S, Phelippeau M, Hakimi C et al
(2017) Cystic fibrosis respiratory tract salt concentration: an exploratory cohort study. Medicine
96(47):e8423.
https://doi.org/10.1097/MD.0000000000008423
- Kozlova I, Vanthanouvong V, Johannesson M,
Roomans GM (2006) Composition of airway surface
liquid determined by X- ray microanalysis. Ups J Med
Sci 111(1):137-153. https://doi. org/10.3109/2000-1967-016 https://www.tandfonline.com/doi/
pdf/10.3109/2000-1967-016
- Matsui H, Grubb BR, Tarran R et al (1998) Evidence
for periciliary liquid layer depletion, not abnormal ion
composition, in the pathogenesis of cystic fibrosis
airways disease. Cell 95(7): 1005–1015.
https://doi.org/10.1016/s0092-8674(00)81724-9
- Wheatley CM, Cassuto NA, Foxx-Lupo WT et al
(2010) Variability in measures of exhaled breath Na+,
influence of pul- monary blood flow and salivary Na+.Clin Med Insights Circ Respir Pulm Med 4:25–34.
https://doi.org/10.4137/ccrpm.s4718
- Song Y, Thiagarajah J, Verkman AS (2003) Sodium
and chloride concentrations, pH, and depth of airway
surface liquid in distal airways. J Gen Physiol
122(5):511–519. https://doi.org/10.1085/jgp.200308866
- Hao W, Ma B, Li Z et al (2020) Binding of the SARS-CoV-2 spike protein to glycans. bioRxiv.
https://doi.org/10.1101/2020. 05.17.100537
- Bastier PL, Lechot A, Bordenave L et al (2015) Nasal
irrigation: from empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck
Dis 132(5):281–285. https://doi.org/10.1016/j.anorl.2015.08.001
- Nimsakul S, Ruxrungtham S, Chusakul S et al (2018)
Does heating up saline for nasal irrigation improve
mucociliary function in chronic rhinosinusitis? Am J
Rhinol Allergy 32(2):106–111. https://doi.org/10.1177/1945892418762872
- Niedner R (1997) Cytotoxicity and sensitization of
povidone-iodine and other frequently used antiinfective agents. Dermatology 195(Suppl2):89-92.
https://doi.org/10.1159/000246038.
- Gudmundsdottir Á, Scheving R, Lindberg F, Stefansson B (2020) Inactivation of SARS-CoV-2 and HCoV-229E in vitro by ColdZyme® a medical device mouth
spray against the common cold. J Med Virol.
https://doi.org/10.1002/jmv.26554.org/10.1002/jmv.26
554.
- Kido H (2015) Influenza virus pathogenicity regulated
by host cellular proteases, cytokines and metabolites,
and its therapeutic options. Proc Jpn Acad Ser B Phys
Biol Sci 91(8):351–368. https://doi.org/10.2183/pjab.91.351.
- Liu JJ, Chan GC, Hecht AS et al (2014) Nasal saline
irrigation has no effect on normal olfaction: a prospective randomized trial. Int Forum Allergy Rhinol
4(1):39-42. https://doi.org/10.1002/alr.21235.
- Piromchai P, Puvatanond C, Kirtsreesakul V et al
(2019) Effectiveness of nasal irrigation devices: a Thai
multicentre survey. PeerJ 27(7):e7000.
https://doi.org/10.7717/peerj.7000.
- Navarra J, Ruiz-Ceamanos A, Moreno JJ et al (2002)
Acute nasal dryness in COVID-19. medRxiv
2020.11.18.20233874 [Preprint]. https://doi.org/10.1101/2020.11.18.20233874.
|
|